偷拍亚洲色图,色av一区二区,亚洲色图第一页,一级做a爰片久久

TDA2030功放電路圖 電動車充電器電路圖 電子電路 功放電路 電子制作 集成塊資料 電子報 pcb 變壓器 元器件知識 逆變器電路圖 電路圖 開關電源電路圖 傳感器技術 led 電磁兼容
電子電路圖
當前位置: 首頁 > 電子電路 > 設計編程

反激式開關電源的變壓器電磁兼容性設計

時間:2011-03-17 20:17:43來源:原創 作者:admin 點擊:

  反激式開關電源的變壓器電磁兼容性設計

 

    隨著功率半導體器件技術的發展,開關電源高功率體積比和高效率的特性使得其在現代軍事、工業和商業等各級別的儀器設備中得到廣泛應用,并且隨著時鐘頻率的不斷提高,設備的電磁兼容性(EMC)問題引起人們的廣泛關注。EMC設計已成為開關電源開發設計中必不可少的重要環節。本文由www.ytjinfuren.com整理提供,部分內容來源于網絡,如有侵犯到你的權利請與我們聯系更正。

  

    傳導電磁干擾(EMI)噪聲的抑制在產品開發初期就加以考慮。通常下,加裝電源線濾波器是抑制傳導EMI的必要措施l1l。但是,僅僅依靠電源輸入端的濾波器來抑制干擾往往會導致濾波器中元件的電感量和電容量增大。而電感量的使體積;電容量的增大受到漏電流安全標準的限制。電路中的其他部分設計恰當也可以完成與濾波器相似的工作。本文提出了變壓器的噪聲活躍節點相位干燥繞法,這種設計方法不僅能減少電源線濾波器的體積,還能降低成本。  

1 反激式開關電源的共模傳導干擾  

    電子設備的傳導噪聲干擾指的是:設備在與供電電網連接工作時以噪聲電流的形式通過電源線傳導到公共電網環境中去的電磁干擾。傳導干擾分為共模干擾與差模干擾兩種。共模干擾電流在零線與相線上的相位相等;差模干擾電流在零線與相線上的相位相反。差模干擾對總體傳導干擾的貢獻較小,且主要集中在噪聲頻譜低頻端,較抑制;共模干擾對傳導干擾的貢獻較大,且主要處在噪聲頻譜的中頻和高頻頻段。對共模傳導干擾的抑制是電子設備傳導EMC設計中的難點,也是最主要的任務。  

    反激式開關電源的電路中存在電壓劇變的節點。和電路中其他電勢穩定的節點不同,這些節點的電壓包含高強度的高頻成分[2]。這些電壓變化十分活躍的節點稱為噪聲活躍節點。噪聲活躍節點是開關電源電路中的共模傳導干擾源,它作用于電路中的對地雜散電容就產生共模噪聲電流M 。而電路中對EMI影響較大的對地雜散電容有:功率開關管的漏極對地的寄生電容C 變壓器的主邊繞組對副邊繞組的寄生電容Cp ;變壓器的副邊回路對地的寄生電容C 變壓器主、副邊繞組對磁芯的寄生電容C。 、C 以及變壓器磁芯對地的寄生電容C? 這些寄生電容在電路中的分布如圖1。  
本文由www.ytjinfuren.com整理提供,部分內容來源于網絡,如有侵犯到你的權利請與我們聯系更正。

    圖l中的共模電流, 在電路中的耦合途徑主要有3條:從噪聲源—— 功率開關管的d極通過C耦合到地;從噪聲源通過c。 耦合到變壓器次級電路,再通過C 耦合到地;從變壓器的前、次級線圈通過C?C 耦合到變壓器磁芯,再通過C 耦合到地。這3種電流是構成共模噪聲電流(圖1中的黑色箭頭)的主要因素。共模電流通過電源線輸入端的地線回流,從而被LISN取樣測量得到。  

2 隔離變壓器的EMC設計  

2.1 傳統變壓器EMC設計  

    共模噪聲的耦合除了通過場效應管d極對地這條途徑外,開關管d極的噪聲電壓通過變壓器的寄生電容將噪聲電流耦合到變壓器副邊繞組所在的回路,再通過次級回路對地的寄生電容耦合到地也是共模電流產生的途徑。設法減小從變壓器主邊繞組傳遞到副邊繞組間的共模電流是一種有效的EMC設計方法。傳統的變壓器EMC設計方法是在兩繞組間添加隔離層[3],如圖2。  

    金屬隔離層直接連接地線的設計會增大共模噪聲電流,使EMC性能變差。隔離層應該是電路中電位穩定的節點,比如將圖2中的隔離層連接到電路前級的負極一個很好的接法。這樣的連接能把原本流向大地的共模電流有效分流,從而大大降低電源線的傳導噪聲發射水平。  

2.2 節點相位平衡法  

    在電路中,噪聲電壓活躍節點并不是單一的。以本文分析的電路為例:除功率開關管的d極外,變壓器前級繞組的另一端U 也是一個噪聲電壓活躍節點,而且節點電壓的變化方向與場管的d極電壓相反。變壓器次級繞組的兩端是相位相反的噪聲電壓活躍節點。圖3的是采用節點相位平衡法后,變壓器骨架上的線圈分布。  

    變壓器骨架最內層是前級繞組線圈的一半,與功率開關管的d極相連;層的線圈是次級繞組;最外層是前級繞組的另一半,與節點U. 相連。噪聲電流主要通過前后級線圈層的寄生電容耦合,把前、后級線圈方向相反的噪聲活躍節點成對地繞在內外層就能使大部分的噪聲電流抵消,大大降低了最終耦合到次級的噪聲電流的強度。  

    本文討論的電路中還存在前級電路和次級電路的輔助電源,也是由繞在變壓器上的獨立線圈提供能量的。這兩級輔助線圈的存在給噪聲電流的傳播提供了額外的途徑。輔助線圈是控制電路的供電設計的。盡管控制電路本身的功率很小,但的存在卻增大了電路對地的寄生電容,從而分擔了一部分把共模噪聲從活躍節點耦合到地的工作。然而把這些繞組夾在前級線圈和次級線圈的繞組就能增大前后級繞組的距離,從而的層間寄生電容就減小了,噪聲電流就能相應減小。,變壓器繞制的最終方法應如圖4。從內到外的線圈繞組依次是:前級繞組的一半、輔助繞組的一半、后級繞組、輔助繞組的另一半和前級繞組的另一半。  

3 實驗部分  

    變壓器改進繞法對開關電源的傳導EMC性能提高的有效性可以通過實驗得到驗證。  

3.1 實驗方法  

    實驗文獻[43中的電壓法進行。頻段范圍為0.15~30 MHz;頻譜分析儀的檢波方式為準峰值檢波;測量帶寬為9 kHz;頻譜橫軸(頻率)取對數形式;噪聲信號的單位為dB/"Vl5j  

3.2 實驗結果  

    圖5為變壓器設計改進前后實驗樣品的傳導噪聲頻譜對比。  

    圖5中的上下兩條平行折線分別為國際無線電干擾特別委員會(簡稱CISPR)頒布的CISPR22標準中b級要求的準峰值檢波限值和平均值檢波限值;而曲線為開關電源的傳導噪聲頻譜。從實驗結果可以看出:與傳統方法相比,新方法有著更出色的對共模噪聲電流的抑制能力,尤其在中頻1~ 5MHz的頻段。在較低頻段,電源線上的傳導干擾主要是差模電流引起的;而在中高頻段,共模電流起主要作用。而本文提出的方法對共模電流的抑制較強,實驗和理論是相符合的。在10 MHz的頻段,主要由電路中的其他寄生參數決定EMC性能,與變壓器關系不大。  

4 結束語  

    開關電源電路中的噪聲活躍節點是電路中的共模噪聲源。要降低開關電源的傳導干擾水平,上是減小共模電流強度、增大噪聲源的對地阻抗。在傳統的隔離式EMC設計中,隔離層連接到電路中電位穩定的節點上(如:變壓器前級的負極)要比直接連到地線對EMI干擾的抑制更有效。  

    開關電源電路中的噪聲活躍節點通常都是成對存在的,這些成對節點的相位相反,這一特點活躍節點相位平衡繞法對EMI抑制的有效性高于傳統的隔離式設計。添加隔離金屬層,變壓器的體積與成本都能被有效減小或降低。

容-源-電-子-網-為你提供技術支持

本文地址:http://www.ytjinfuren.com/dz/22/2011317202133.shtml


本文標簽:


.
頂一下
0%
返回首頁
0
0%

------分隔線----------------------------
發表評論
請自覺遵守互聯網相關的政策法規,嚴禁發布色情、暴力、反動的言論。
表情:
名稱: E-mail: 驗證碼: 匿名發表
發布文章,推廣自己產品。
熱門標簽
 
偷拍亚洲色图,色av一区二区,亚洲色图第一页,一级做a爰片久久
色偷偷成人一区二区三区91| 夜夜嗨av一区二区三区中文字幕 | 欧美一区二区女人| 成人网男人的天堂| 国产美女在线观看一区| 日本成人超碰在线观看| 久久久久九九视频| 日韩免费一区二区| 欧美电影在哪看比较好| 色婷婷国产精品| 99re视频这里只有精品| 美女视频一区二区| 男人的天堂久久精品| 日本不卡视频在线观看| 一区免费观看视频| 中文字幕乱码一区二区免费| 国产校园另类小说区| 久久精品欧美一区二区三区麻豆| 亚洲精品在线网站| 欧美另类变人与禽xxxxx| 色八戒一区二区三区| 99久久夜色精品国产网站| 大尺度一区二区| 国产精品18久久久久| 精品在线一区二区三区| 久久成人久久爱| 国产一区二区成人久久免费影院 | 欧美精品三级在线观看| 精品黑人一区二区三区久久| 亚洲国产电影在线观看| 亚洲一区二区欧美日韩| 久久69国产一区二区蜜臀| 99久久精品一区二区| 欧美日韩高清一区二区三区| 久久九九99视频| 五月天婷婷综合| av中文字幕在线不卡| 91精品国产品国语在线不卡| 国产精品第13页| 卡一卡二国产精品 | 风间由美一区二区三区在线观看| 97se亚洲国产综合自在线观| 日韩久久免费av| 一区二区三区四区高清精品免费观看 | 中文无字幕一区二区三区| 一个色在线综合| 福利91精品一区二区三区| 欧美日韩国产电影| 国产精品毛片大码女人| 看片网站欧美日韩| 欧美精品在线观看一区二区| 亚洲视频免费在线观看| 韩日欧美一区二区三区| 777精品伊人久久久久大香线蕉| 国产精品国产精品国产专区不蜜 | 国产色产综合产在线视频| 亚洲国产精品久久久久秋霞影院| 成人av电影免费观看| 久久久亚洲高清| 久久丁香综合五月国产三级网站| 欧美性欧美巨大黑白大战| 国产肉丝袜一区二区| 蜜臀va亚洲va欧美va天堂| 欧美日韩精品是欧美日韩精品| 亚洲丝袜美腿综合| 波多野结衣欧美| 国产精品成人午夜| 国产成人av影院| 国产精品私人影院| 国产成人午夜精品影院观看视频| 精品对白一区国产伦| 久久99国产精品久久99| 精品久久久三级丝袜| 视频精品一区二区| 日韩一级视频免费观看在线| 日本欧美一区二区| 精品国精品自拍自在线| 久草中文综合在线| 国产欧美一区二区三区在线看蜜臀| 国产一区二区在线观看免费| 久久亚洲一区二区三区明星换脸| 国产麻豆一精品一av一免费| 国产日本亚洲高清| www.亚洲免费av| 亚洲与欧洲av电影| 91精品久久久久久蜜臀| 国内成人精品2018免费看| 久久亚洲一区二区三区明星换脸| 国产成人免费xxxxxxxx| 中文字幕在线观看一区二区| 91在线丨porny丨国产| 亚洲午夜久久久久久久久久久 | 夜夜精品视频一区二区 | 午夜精品成人在线| 91精品国产综合久久久久久| 精品一区二区三区视频| 国产精品久久久久影院色老大| 色综合色综合色综合| 天天操天天色综合| 久久夜色精品一区| 在线观看不卡一区| 久色婷婷小香蕉久久| 亚洲国产精品av| 欧美年轻男男videosbes| 国产一区在线不卡| 亚洲国产你懂的| 精品美女被调教视频大全网站| 成人一区二区三区| 午夜欧美在线一二页| 精品国产污网站| 色综合久久久网| 国产一区二区三区四区在线观看| 亚洲美女视频一区| 久久综合成人精品亚洲另类欧美| 色久综合一二码| 国内外成人在线| 一区二区三区日韩| 欧美极品少妇xxxxⅹ高跟鞋| 欧美日韩aaaaa| 成人av午夜电影| 麻豆国产精品777777在线| 亚洲免费资源在线播放| 久久免费午夜影院| 欧美精品在线一区二区| 色婷婷亚洲精品| av不卡一区二区三区| 激情国产一区二区| 午夜激情久久久| 亚洲综合男人的天堂| 日本一区二区三区国色天香 | 99久久精品国产导航| 精品综合免费视频观看| 性做久久久久久久免费看| 成人免费小视频| 国产精品进线69影院| 国产夫妻精品视频| 久久精品人人做人人爽人人| 欧美日韩一区高清| 色狠狠桃花综合| 91影视在线播放| 91美女福利视频| 91视频在线看| 97精品超碰一区二区三区| 成人动漫av在线| 成人午夜短视频| av在线播放成人| 99国产精品久久久| 日本道色综合久久| 欧美综合天天夜夜久久| 色香蕉久久蜜桃| 欧美日韩一区二区电影| 欧美巨大另类极品videosbest| 欧美视频在线观看一区二区| 欧美日韩一区二区三区高清 | 欧美一级片免费看| 日韩欧美精品在线| 日韩欧美国产小视频| 日韩免费视频一区| 久久网站最新地址| 国产精品久久久久影院| 日韩免费观看高清完整版在线观看| 久久99最新地址| 国产九九视频一区二区三区| 粉嫩av一区二区三区在线播放| 国产成人亚洲综合a∨婷婷| 高清成人免费视频| 欧美优质美女网站| 欧美一区二区视频在线观看2022| 亚洲精品一区二区三区福利| 国产色产综合产在线视频| 亚洲柠檬福利资源导航| 日韩国产成人精品| 国产成人aaa| 97精品久久久午夜一区二区三区| 色网站国产精品| 欧美成人一区二区| 国产精品国产三级国产三级人妇| 亚洲风情在线资源站| 国产在线精品一区在线观看麻豆| www.欧美.com| 91精品国产入口在线| 欧美国产成人精品| 首页亚洲欧美制服丝腿| 国产99一区视频免费| 欧美日韩免费一区二区三区| 久久伊人蜜桃av一区二区| 亚洲精品国产一区二区精华液| 久久狠狠亚洲综合| 一本到高清视频免费精品| 日韩精品一区二区三区在线播放| 亚洲欧美自拍偷拍色图| 日韩电影在线一区二区三区| caoporm超碰国产精品| 日韩免费观看高清完整版| 一区二区三区在线播| 国产麻豆视频精品| 日韩一级片在线播放| 亚洲一区二区在线免费看| 国产高清精品在线| 欧美成人a视频|